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A DYNAMIC MODEL OF AN AXISYMMETRIC, TRANSVERSELY ISOTROPIC, 
FLUID-LOADED, FULLY ELASTIC CYLINDRICAL SHELL 

1. INTRODUCTION 

Fluid-loaded shells are encountered in numerous natural and man-made applications. 

Examples include arteries, inner ear tubes, hydraulic lines, marine pilings, water pipes, and shock 

absorbers. Understanding the behavior of these systems is important so that their performance 

can be analyzed or, in the case of mechanical systems, the next generation can be better 

designed. Extensive modeling of these systems has been done over the years, and a large volume 

of research articles exists in the area of cylindrical and spherical shells. From a complexity 

standpoint, membrane models of shells are the most simplistic and have been derived and 

analyzed most notably by Love.1 A bending stiffness term was added to the membrane equations 

by Donnell.2 Rotary inertia and shear effects were added to the cylindrical shell equations by 

Mirsky and Herrmann.3-4 These previous models are based on membrane and flexural wave 

theory and are accurate only at low frequencies and low wavenumbers. The fully elastic, 

isotropic cylindrical shell was modeled and analyzed by Gazis. '   The work by Gazis was a 

significant extension of previous theory as it allowed analytical modeling at all frequencies and 

wavenumbers, rather than just a small subset of low-frequency and low-wavenumber analysis. 

The fully elastic, transversely isotropic cylindrical shell was modeled by Laverty7 for analysis of 

wood cylinders. Fay added fluid loading to the membrane theories for a solid cylinder. 

Additionally, Peloquin9 added fluid loading to various flexural wave theories for hollow 

cylinders. 

This report develops an analytical model of a transversely isotropic, fluid-loaded, fully 

elastic axisymmetric cylinder that is in contact with fluid on both its interior and exterior. The 

model begins with the equations of motion of a transversely isotropic body in cylindrical 

coordinates. Using the radial and longitudinal equations of motion, two free wavenumbers are 

calculated corresponding to two specific waves that are propagating in the medium. A solution 

set to the shell displacement field is formulated that contains four unknown wave propagation 

coefficients. These coefficients are inserted into the stress boundary conditions at the inner and 



outer surfaces of the shell. Also included in these boundary conditions are the pressure loads of 

the inner and outer fluid fields and any external loads that may be acting on the system. This 

produces four algebraic equations with four unknown wave propagation coefficients. This set of 

equations can be solved to obtain an analytical solution to the shell displacements, the pressure 

of the inner fluid, and the pressure of the outer fluid. The model is verified by comparing the 

results with two previously derived models, and a numerical example is included to illustrate the 

behavior of a thick shell under two loading conditions. Additionally, a MATLAB subroutine is 

included that contains a vectorized computation that outputs interior shell pressure produced 

from external forcing functions. 



2. SYSTEM MODEL 

The system equations consist of three separate models: the cylindrical shell equations of 

motion in the radial and axial direction, the inner acoustic field wave equation of pressure, and 

the outer acoustic field wave equation of pressure. Once the general solutions to these equations 

of motions and pressure are determined, they are coupled using linear momentum and inserted 

into the stress fields at the inner and outer radii of the shell. This produces a four-by-four matrix 

that contains the dynamics of the system multiplied by a four-by-one vector that contains the 

unknown wave propagation coefficients and is equal to a four-by-one vector containing the 

applied external loads. This matrix equation can be solved and the response of the system can be 

calculated. This process is described below. A schematic of the system illustrating the 

coordinate system is shown in figure 1. 

Outer 
Fluid 

r = 0 r = a r=b 

Figure 1. Fluid-Loaded Shell with Coordinate System 



The equation of motion of a fully elastic, isotropic body in cylindrical coordinates10 in the 

radial direction is 

d2u(x,r,t) 
P 1 = ci 

dt2 ' 

d2u(x,r,t)    1 8u(x,r,t)    u(x,r,t) 

dr2 r      dr r2 

52 

+ C. 
d2u(x,r,t) 

~dx~2 

+ (cu+cM) 
d w(x,r,t) 

drdx 

(1) 

in the longitudinal direction, the equation is 

d w(x,r,t) 
P — = (c13 + c44 ) 

dt4 

6 u(x,r,t)    1 du(x,r,t) 

drdx r      dx 

+ c44 
d w(x,r,t)    1 dw(x,r,t) 

dr' dr 
+ C33 

d w(jc,r,/) 

~dx^ 

(2) 

In equations (1) and (2), u(x,r,t) is the displacement in the radial direction (m), w(x,r,t) is the 

displacement in the longitudinal direction (m), r is the coordinate of the radial direction (m), x is 

the coordinate of the longitudinal direction (m), / is time (s), p is density of the shell (kg m"3), and 

cy are stiffness constants that contain the material properties (N m"2) and are typically complex 

quantities. These constants are determined using the constitutive equations in cylindrical 

coordinates between strain and stress written for a solid that is transversely isotropic in the axial 

direction with respect to the radial and circumferential directions. These equations are 

fX XK £rr =—<Jrr --^-a9d ~^~axx » 
tr tr hx 

fX XV £0e =- — °'rr + — (766 —~^~axx » 
hr tr tx 

vrx _ °rx „ _ £xx ~ —7r~arr --^aGG +"^_crxx: > 
£,r Lr tLx 

YxO =-^—Tx0 
^xr 

(3) 

(4) 

(5) 

(6) 



y' xr      ^     Txr ' \ ') 
Uxr 

and 

Yx9=—*r9' (8) Urx 

where ex\ are the normal strains (dimensionless), yx\ are the shear strains (dimensionless), o\\ are 

the normal stresses (N m"2), fjj are the shear stresses (N m2), Er is Young's modulus in the radial 

direction (N m" ), Ex is Young's modulus in the axial direction (N m"), urx is Poisson's ratio in 

the longitudinal direction with a load being applied in the radial direction (dimensionless), and 

uxr is Poisson's ratio in the radial direction with a load being applied in the longitudinal 

direction (dimensionless). Equations (3) through (8) are inverted so that the stresses are 

functions of the strains, which in matrix form is 

a = CE , (9) 

where 

a = [arr    ode    <JXX    TX9    rxr    rr6\    , (10) 

and 

e = kr   £ee   £xx   rxe   rxr   YreV • (H) 

Using equation (9) and Betti's reciprocal law for composite materials, written as 

^rx _ ^xr 
tr       tx 

(12) 

the stiffness constants in equations (1) and (2) can be solved for in terms of engineering 

constants. They are 

cll =  ' \\j) (1 + vrx )(1 - urx - 2vrxvxr) 



 Erorx(l + oxr) > (14) 

(^ + uny(\-u„-2urxuxr) 

c13 = > U->) 

Eruxr(\-vrx) 
c33=—« : r> (16) 

Vrx<\-Vrx-2»rx»xr) 

and 

CA4=Gxr = .n
E*    ,- (17) 

2(l + uxr) 

The solution to equations (1) and (2) is now determined for free wave propagation in a 

medium that is bounded in the radial direction, unbounded in the axial direction, and harmonic in 

time. The argument is made7 that the solution to the transversely isotropic differential equations 

has to have the same form as the solution to the isotropic differential equations. Thus, the 

solution in the radial direction is written as 

u(r,x,t) = U(r)exp(ikx)exp(-icot) = GBi(yr)exp(ikx)exp(-\a>t), (18) 

and the solution in the longitudinal direction is written as 

w(r,x,t) = W(r)exp(ikx)exp(-icot) = //B0(^r)exp(ibi:)exp(-iftrf), (19) 

where G and //are unknown wave propagation coefficients, B] denotes an ordinary Bessel 

function of order one, B0 denotes an ordinary Bessel function of order zero, y is the free 

propagation wavenumber (rad m"1), k is the wavenumber with respect to the jc-axis (rad m"1), and 

i is V^T. It is noted that the free propagation wavenumbers are typically complex quantities; 

thus, the Bessel functions contain complex arguments. To facilitate this type of analysis, the 

Bessel functions will all be ordinary Bessel functions of the first and second kind with complex 

arguments, rather than switching between normal and modified Bessel functions based on the 

sign of the argument. Substituting equations (18) and (19) into equations (1) and (2) yields the 

two-by-two system of algebraic equations, written as 



2 2 2 pco   -c\\Y   -c44k 

i*/(ci3+C44) 

-iky(cl3+c44) 

pco2 -c44y
2 -c33k

2 
(20) 

The determinant of the two-by-two matrix in equation (20) must be zero if a solution other than 

the trivial solution is going to exist. This yields a quadratic equation with respect to the 

propagation wavenumber y2 that is written as 

ay   +by2 +c = 0 (21) 

where 

a = cuc44 , 

b = (cnc33-c
2

3-2cl3c44)k
2 -(c44+cu)pco2 , 

(22) 

(23) 

and 

c = p co   -(c33 +c44)pco k   +c33c44k (24) 

The solution to equation (21) is 

r\,2 
-b±(b2-4ac)]/2 

2a 

1/2 

(25) 

Only the positive values from equation (25) are needed, as the zero-order and first-order Bessel 

functions in equations (18) and (19) are even functions; thus, negative values will not contribute 

to a linearly independent solution. The first row of equation (20) yields 

H = P<0 -cuy -cj<. G 

iky^icu+c^) 

(26) 

= ^G. 



The solution is now written as Bessel functions of the first kind using the wavenumbers y\ 

and Yi. The expressions for the displacement fields are 

u(x,r,t) = [G,J, for) + G3J, for)]exp(ifcc)exp(-i6;0, (27) 

and 

w(x,r,t) = [HiJ0(yir) + HiJ0(y2r)]exp(ikx)exp(-iG)i) 
(28) 

= [G,^,J0(r,r) + G3£2J0fo2r)]exp(iAx)exp(-i6>0. 

Additionally, because the domain of r is from a{> 0) to b{< oo), Bessel functions of the second 

kind are admissible solutions, and the expressions for the displacement fields using these 

functions are 

u(x,r,t) = [G2Y](y]r) + G4Y](y2r)]exp(ikx)exp(-iG)t), (29) 

and 

w(x,r,t) = [H2Y0(y{r) + H 4Y0(y2r)]exp(ikx)exp(-ict)i) 
(30) 

= [G2%iYo(r\r) + GA42Y0(y2r)]exp(ikx)exp(-\(Dt). 

The problem set represented by equations (27) and (28) is linearly independent from the solution 

set given by equations (29) and (30), and a complete solution is a linear combination of both 

equation sets. This gives the total solution to the shell displacements as 

u(x,r,t) = [G, J, for) + G2Y, for) + G3J,fo2r) + G4Y, (y2r)]exp(ikx)exp(-icot), (31) 

and 

w(x,r,0 = [G1^J0(71r) + G2^1Y0for) + G3^2J0fo2r) + G4^2Y0fo2r)]exp(ifcf)exp(-iG)0,        (32) 

where G\, Gj, G3, and G4 are unknown wave propagation coefficients. The insertion of 

equations (31) and (32) into equations (1) and (2) verifies that they are solutions to the original 

differential equations of motion. 



The unknown wave propagation coefficients are determined using the four stress-boundary 

conditions of the shell. The first boundary condition is a force balance between the pressure in 

the interior fluid and the normal radial stress in the shell at the interface where r = a. This 

equation is written as 

du(x,a,t)          u(x,a,t)         dw{x,a,t) 
arr(x,a,t) = cu + cn + c13 = -pt(x,a,t), 

dr dx 
(33) 

where pt(x,a,t) is the pressure of the interior fluid (N m"2) at r = a, which satisfies the wave 

equation in cylindrical coordinates; i.e., 

d2pj(x,r,t) ^ \dpj(x,r,t) | d2 pt{x,r,t)      1   d2pt(x,r,t) 

dr' dr dx' cf 
(34) 

where c, is the acoustic (or compressional) wavespeed of the interior fluid (m s"1). Using the 

infinite length of the cylinder in the x-direction and the constraint that the pressure field has to be 

finite at r = 0, the temporal harmonic solution to equation (34) is 

pXx,r,t) = ^(r)exp(ifcc)exp(-i&>/) = M0(/,r)exp(ifcc)exp(-i<y/), (35) 

where 

Yi = 

(    \ 
CO 

\ci J 

-k- 

1/2 

= (k2-k2)V2 (36) 

In general, y, can be a complex quantity if the internal fluid acoustic wavespeed is complex; i.e., 

contains a loss term as an imaginary quantity. If the loss factor is zero, then the internal fluid 

acoustic wavespeed is purely real, and y-, will be either purely real or purely imaginary. To relate 

the internal acoustic pressure field to the radial shell displacement field, conservation of 

momentum is invoked at the interface. This equation is 



d u{x,a,t)       dp Ax, a, t) 
Pi~—2 = — dtd dr 

(37) 

where p, is the density of the interior fluid (kg m"3). Inserting equations (31) and (35) into 

equation (37) allows the constant A/to be determined and the pressure field to be written as 

P.(r) =    <° PLhk£hGlh (na) + G2Y, (7xa) + G3J, (r2a) + G4Y{{y2a)} . 
Yi     hifta) 

(38) 

Inserting equations (31), (32), and (38) into equation (33) yields the first algebraic boundary 

value equation, written as 

V 
(cuy]+ikc]i^)J0(y]a) + 

(cuyl+ikcl3gl)Y0(yla) + 

(cuy2+ikC[^2)i0(y2a) + 

• (c11/2+i^c13^2)Y0(^2fl) + 

rcn-cu + -a/pi J0(y,a) \ 

a y.     J t(y.a) 
J.(r,«) 

g|2 ~g||    ,   -P?Pi  JQO^)' 

V      a Y,     J,(/,«)y 

'c,2-c„ | -^
2
A Jo(r,^)N 

« Y,     J, (/,«), 

Y,(r,fl) 

Ji(/2
fl) 

Y.OVO G4=0. 

(39) 

The second boundary condition is the radial-longitudinal shear stress in the shell at the interface 

where r = a is zero, and this equation is written as 

crrx(x,a,t) = c44 

f du(x,a,t)    dw(x,a,t) 
dx dr      j 

0 . (40) 

Inserting equations (31) and (32) into equation (40) yields the second algebraic boundary value 

equation, written as 

10 



[cu(\k-y&)),{y,a)]Gx 

+[c44(i*-r1£)Y1(r,a)]G2 
(41) 

+ [c44(ik-y2^2)Y](y2a)]G4=0. 

The third boundary condition is a force balance between the pressure in the exterior fluid, an 

applied radial load, and the normal radial stress in the shell at the interface where r = b. This 

equation is written as 

.    .   . du(x,b,t) u(x,b,t) dw(x,b,t) .   ,   . , ,„„ 
<jrr(x,b,t) = cu     \      '+cn       ,       +cu '  ' J=Po(x,b,t)-pe(x,t) , (42) 

or b ox 

where pe(x,t) is an applied external forcing function (N m"2) in the radial direction that is 

assumed to be at a discrete wavenumber and frequency; thus, 

pe(x,t) = Peexp(\kx)exp(-icot) , (43) 

and p0(x,b,t) is the scattered acoustic pressure of the exterior fluid (N m"2) at r = b, which 

satisfies the wave equation in cylindrical coordinates; i.e., 

d2p0(x,r,t) | 1 dp0(x,r,t) | d2p0(x,r,t) 1   d2pQ(x,r,t) _Q 

8r2 r       dr dx2 cl        dt2 

-), where c0 is the acoustic (or compressional) wavespeed of the exterior fluid (m s" ). Using the 

infinite length of the cylinder in the jc-direction and the constraint that the pressure field has 

vanished when r approaches infinity, the temporal harmonic solution to equation (44) is 

pB(x,r,t) = P0(r)exp(\kx)cxp(-icot)^ NUy(y0r)exp(\kx)exp(-icot) , (45) 

where HQ ' denotes a zero-order Hankel function of the first kind and 

11 



Yo 

f     \ 
CO 

\co J 
-k' 

1/2 

= (k2o-k2)V2 (46) 

The external fluid wavenumber y0 can be a complex quantity if the external fluid acoustic 

wavespeed is complex, i.e., contains a loss term as an imaginary quantity. If the loss factor is 

zero, then the external fluid acoustic wavespeed is purely real, and y0 will be either purely real or 

purely imaginary. To relate the external acoustic pressure field to the radial shell displacement 

field, conservation of momentum is invoked at the interface. This equation is 

Po 
d u(x,b,t)       dp0(x,b,t) 

dtd dr 
(47) 

where p0 is the density of the exterior fluid (kg m" ). Inserting equations (31) and (45) into 

equation (47) allows the constant N to be determined and the pressure field to be written as 

w= Q>2Po HJ)'W) 
Yo     U\l\r0a) 

[Gxix{yxb) + G2 Y, (yxb) + G3ix {y2b) + G4 Y, (y2b)] (48) 

Inserting equations (31), (32), and (48) into equation (42) yields the third algebraic boundary 

value equation, written as 

12 (cuyl+\kcl^l)ia(y,b) + 

(cuyi+ikcn£])Y0(y]b) + 

- (cuy2+\kcn<^2)J0(y2b) + 

12      ^11 -©V0 n•(r0b) 
b Y0     H\l)(Y0b), 

(cn-cn    -co2p0H^(y0b)^ 

y     b 7o     H\l>(y0b) 

rcn-cn    -co2p0H^(y0b)^ 
0)i Yo     H\"(y0b) 

J,(r,6) 

h(r2b) 

G, 

(cuy2+\kClJ2)Y0(y2b) + 
co'Po H^(y0b) 

Yo     H\]\y0b) 
YiW) G4 = -P. 

(49) 

12 



The fourth boundary condition is the radial-longitudinal shear stress in the shell at the interface 

where r = b and is equal to an applied longitudinal load that is assumed to be at a discrete 

wavenumber and frequency; thus, 

,    ,   . (du(x,b,t)    dw(x,b,t)\     . ,    . ,„,.. 
arx(x,b,t) = cAA      Y       +     V =fe(xtt), (50) 

V      ox or      J 

where fe(x,t) is an applied external forcing function (N m"2) in the longitudinal direction that is 
assumed to be at a discrete wavenumber and frequency; thus, 

fe(x,t) = Feexp(\kx)Qxp(-icot) . (51) 

Inserting equations (31), (32), and (51) into equation (50) yields the fourth algebraic boundary 

value equation, written as 

[c44(i*-r1£)J1(r1*>)]G1 

+ [c44(i*-/,£)Y1(^)]G2 

(52) 

+ [c44(ik-y2{2)Yi(y2b)]G4=Fe- 

Equations (39), (41), (49), and (52) are now written in matrix form as 

Ag = f, (53) 

where A is a known four-by-four coefficient matrix, g is a four-by-one vector that contains the 

four unknown wave propagation coefficients, and f is a four-by-one load vector that represents 

the external forces exciting the system. (The entries of the matrix and vectors in equation (53) 

are given in appendix A.) The wave propagation coefficients are now found by 

g = A-!f. (54) 

Once the wave propagation coefficients are known, the shell displacements can be calculated 

using equations (31) and (32), the exterior pressure field can be calculated using equation (48), 

and the interior pressure field can be calculated using equation (38). 

13 (14 blank) 



3. MODEL VALIDATION 

The model is now validated by comparison to previously developed shell theories. First, 

the fully elastic thick shell model derived in section 2 is compared to a transversely isotropic thin 

shell model. From a previously developed isotropic thin shell model,11 fluid loading is added to 

produce a longitudinal equation of motion, written as 

phd^jxlll=       hEx       a2w(.,Q+     huxrEr     du{x,t)+ > 

dt2 Q-Vrx»xr)     dx2 a(l-urxvxr)     dx 

and a radial equation of motion, written as 

(56) 

&«(xt)=_Bd*«(xt)_        hEr  honEx     dwjx,t) 

dt2 dxA        a2{\-vnvxr) a{\-vrxvxr)     dx 

+ p,(a,x,i)-p0(a,x,t)-pe(x,t), 

where B is the flexural stiffness (N m) of the shell and is given by 

h3Ex B = *  . (57) 
\2(\-vrxuxr) 

Making the assumption of harmonic response in space and time, the displacements can be 

written as 

u(x,t) = Uexp(ikx)Qxp(ia)t), (58) 

and 

w(x,t) = Wexp(ikx)exp(icot) . (59) 

This produces the matrix equation 

Bu = p , (60) 

where the unknown displacements are contained in the vector u. (The entries of the matrix and 

vectors in equation (60) are listed in appendix A.) The unknown displacements are determined 

using 

15 



u = B_1p . (61) 

Once the displacements are known, the interior pressure field for this model can be calculated 

using 

Yi     Ji(Ti«) 

and the exterior pressure filed can be calculated using 

W=-alp°HZMV. (63) 
To     HJ'V^) 

Figure 2 is a plot of the transfer function of internal pressure at r = 0 divided by external 

forcing function in the radial direction versus wavenumber. Figure 3 is a plot of the transfer 

function of internal pressure at r = 0 divided by external forcing function in the longitudinal 

direction versus wavenumber. In both figures, the upper plot is the magnitude of the power 

expressed in the decibel scale and the lower plot is the phase angle expressed in degrees. The 

solid line is the transversely isotropic thick shell model developed in section 2 and the dots 

correspond to the transversely isotropic thin shell model listed as equations (55) through (63). 

In this example, the thickness of the shell was small (5.08 x 10"4 m) and the frequency was low 

(100 Hz), so the assumptions of the thin shell model are valid and the outputs of the two models 

should reasonably agree. Figures 2 and 3 were generated with the following parameters: shell 

density p = 1200 kg m"3, radial Poisson's ratio due to longitudinal load uxr = 0.48 

(dimensionless), longitudinal Young's modulus Ex = 2 x 109 N m"2, radial Young's modulus 

Er = 3 x 10 N m" , longitudinal Poisson's ratio due to radial load urx = 0.072 (dimensionless), 

shear modulus Gxr = 6.76 x 108 N m"2, inner shell radius a = 0.0759 m, outer shell radius 

b = 0.0765 m, inner fluid density /?, = 800 kg m"3, inner fluid compressional wavespeed 

c, = 1300 m s"1, outer fluid density p0 - 1000 kg m"3, and outer fluid compressional 

wavespeed c0 = 1500 m s" . Based on these values, the computed stiffness constants are 

C, = 3.15 x 108 N m"2, cn = 3.47 x 107 N nT2, cu = 1.68 x 108 N m"2, c33 = 2.16 x 109 N m-2, 

and C44 = 6.76 x 10 N m" . For the model validation problems presented here, the shell has zero 

damping; however, most structures have some loss mechanism associated with their behavior. 
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Note that in figures 2 and 3, there is broad-based agreement between the thin shell model and the 

thick shell model. It is noted that these two transfer functions are of interest, and these specific 

outputs will be investigated in the remainder of this report. 
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Next, the fully elastic thick shell model derived in section 2 is compared to a fully elastic 

isotropic thick shell model. A previously developed thick shell model5'6 is based on Navier's 

equation of motion in an isotropic solid, written in vector form as 

(A + //)VV • u + pV\ = p^-r- , (64) 
dt2 

where X and p are Lame constants (N m"2) of the shell and the vector u represents the 

displacement field (m). This equation is solved and coupled to the inner and outer pressure field 

and the result is the matrix equation 

Cd = f , (65) 

where C is a known four-by-four coefficient matrix, d is a four-by-one vector that contains four 

unknown wave propagation coefficients, and f is a four-by-one load vector that represents the 

external forces exciting the system. (The entries of the matrix and vectors in equation (65) are 

given in appendix A.) The wave propagation coefficients are now found by 

d = C_1f . (66) 

Once the wave propagation coefficients are known, the shell displacements can be calculated 

using 

u(x,r,t) = [-D,aJ, (or) - D1aY] (ar) - D3i£J, (/?r) - DjkYl {Pr)]exp(ikx)e\p(-\cof),     (67) 

and 

w(x,r,/) = [D,iA:J0(ar) + D2iA:Y0(ar) + D3/?J0(^A-) + G4^Y0(^r)]exp(iAx)exp(-ifijO-     (68) 

Once the displacements are known, the interior pressure field for this model can be calculated 

using 

Pi(r) = ~e° P' \^ir\-D,aix{ocr)-D2aY,{ccr)-Diiki,{fir)-D,ikYx{pr)}, (69) 
7,     J,(/,«) 
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and the exterior pressure filed can be calculated using 

-co2p0 H<»Qy) 
P„(r)=     -^-f^^[-Dlai](ar)-D2aY,(ar)-D3ikJi(^)-D4ikYl(/3r)] . (70) 

Figure 4 is a plot of the transfer function of internal pressure at r = 0 divided by external 

forcing function in the radial direction versus wavenumber. Figure 5 is a plot of the transfer 

function of internal pressure at r = 0 divided by external forcing function in the longitudinal 

direction versus wavenumber. In both figures, the upper plot is the magnitude of the power 

expressed in the decibel scale and the lower plot is the phase angle expressed in degrees. The 

solid line is the transversely isotropic thick shell model developed in section 2, and the dots 

correspond to the isotropic thick shell model listed as equations (64) through (70). In this 

example, the transversely isotropic model was run with isotropic material properties, so the 

output of the transversely isotropic model should reasonably agree with the output of the 

isotropic model. Figures 4 and 5 were generated with the following parameters: frequency 

/= 800 Hz, shell density p = 1200 kg m" , radial Poisson's ratio due to longitudinal load vxr = 

0.48 (dimensionless), longitudinal Young's modulus Ex = 3 x 108 N m'2, radial Young's modulus 

Er = 3 x 108 N m"2, longitudinal Poisson's ratio due to radial load urx = 0.48 (dimensionless), 

shear modulus Gxr = 1.01 x 108 N m2, inner shell radius a = 0.0762 m, outer shell radius b = 

0.152 m, inner fluid density p, = 800 kg m* , inner fluid compressional wavespeed c, = 1300 m 

s"1, outer fluid density pa = 1000 kg m"3, and outer fluid compressional wavespeed c0 = 1500 m 

s" . Based on these values, the computed stiffness constants are ci i = X + 2p = 2.64 x 109 N m"2, 

en = A = 2.43 x 109 N m"2, cn = A= 2.43 x 109 N in2, c33 = A + 2/u = 2.64 x 109 N rn2 andcu = 

ju= 1.01 x 108 N m"2. Note that in figures 4 and 5, there is broad-based agreement between the 

thin shell model and the thick shell model. 
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4. HIGH WAVENUMBER APPROXIMATION 

Numerical simulations of this model reveal that at high wavenumbers the A matrix 

becomes ill-conditioned and algorithmically singular. To avoid this problem in any analysis, the 

outputs of the model, i.e., the transfer functions, are analyzed differently in two distinct 

regions—namely, where \k\ < SI a and where \k\ > 51a. In the region where \k\ > 51a, the 

model outputs are calculated in such a manner that they are continuous from \k\ < 51a to 

\k\ > 5 / a and they are proportional to \lkA. This is written in equation form as 

^Piir) 

Pe 

Pe 

,k" 

\k\< 
a 

(71) 

\k\> 

and 

'P,(r) 

P>(r)„ 
Pe 

Pe 
\k\<- 

a 

a (72) 

where 

A0 = 
^4 

\a) 

Pi(r) 
(73) 

and 

fin- 
r5* 

\a) 

Pi(r) 

kJ- 
(74) 

This approximation ensures that the energy falloff past the flexural wave will occur in 

wavenumber at a rate that is observed in most shell models. 
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5. NUMERICAL EXAMPLE 

A numerical example is now investigated using the transversely isotropic shell model 

derived in section 2. Figure 6 is an image of the magnitude of the transfer function of internal 

pressure at r = 0 divided by external forcing function in the radial direction versus frequency and 

wavenumber. This image is the magnitude of the power expressed in the decibel scale with the 

scale's range shown as a colorbar above the plot. Figure 7 shows constant frequency cuts of 

figure 6 at frequencies of 500, 1000, 1500, and 2000 Hz. Figure 8 is an image of the magnitude 

of the transfer function of internal pressure at r = 0 divided by external forcing function in the 

longitudinal direction versus frequency and wavenumber. This image is also the magnitude of the 

power expressed in the decibel scale with the scale's range shown as a colorbar above the plot. 

Figure 9 shows constant frequency cuts of figure 8 at frequencies of 500, 1000, 1500, and 

2000 Hz. Figures 6 through 9 were generated with the following parameters: shell density p = 

1200 kg m"3, radial Poisson's ratio due to longitudinal load vxr = 0.48 (dimensionless), 

longitudinal Young's modulus Ex = 2\ 109(l-0.05i) N m"2, radial Young's modulus Er = 3 x 

108(l-0.10i) N m"2, longitudinal Poisson's ratio due to radial load vrx = 0.0722(1-0.0498i) 

(dimensionless), shear modulus Gxr = 6.76 x 108(l-0.05i) N m"2, inner shell radius a = 0.0762 m, 

outer shell radius b = 0.1524 m, inner fluid density p, = 800 kg m" , inner fluid compressional 

wavespeed c, = 1300 m s" , outer fluid density p0 = 1000 kg m" , and outer fluid compressional 

wavespeed c0 = 1500 m s". Based on these values, the computed stiffness constants are en =3.15 

x 108(l-0.103i)Nm"2,c,2 = 3.46x 107(l-0.156i)N m"2, c,3 = 1.68 x 108(l-0.108i) N m"2, 

c33 = 2.16 x 109( l-0.0543i) N m"2, and CAA = 6.76 x 108(l-0.05i) N m"2. For this problem, the 

two validation models used in section 3 are not capable of modeling this configuration; thus, no 

comparison can be made with previously available solutions. The MATLAB code used to 

generate this (and the previous) example is included as appendix B. 
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6. SUMMARY 

A model of a transversely isotropic thick shell with fluid loading on the inner and outer 

surfaces has been derived. This model is compared to two previously available models and is 

shown to be in agreement for the case where the shell is transversely isotropic and extremely thin 

and the case where the shell is isotropic and thick. A numerical example is given where the shell 

is transversely isotropic and thick. A calculation to bypass the high wavenumber instability that 

is typical of this class of problems is included. The MATLAB code used to generate the 

numerical examples is also included. 

29 (30 blank) 



REFERENCES 

1. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, 
New York, 1944. 

2. H. Kraus, Thin Elastic Shells, John Wiley and Sons, New York, 1967. 

3. I. Mirsky and G. Herrmann, "Nonaxially Symmetric Motions of Cylindrical Shells," 
Journal of the Acoustical Society of America, vol. 29, pp. 1116-1123, 1957. 

4. I. Mirsky and G. Herrmann, "Axially Symmetric Motions of Thick Cylindrical Shells," 
Journal of Applied Mechanics, vol. 25, pp. 97-102, 1958. 

5. D. C. Gazis, "Three-Dimensional Investigation of the Propagation of Waves in Hollow 
Circular Cylinders -1. Analytical Foundation," Journal of the Acoustical Society of 
America, vol. 31, pp. 568-573, 1959. 

6. D. C. Gazis, "Three-Dimensional Investigation of the Propagation of Waves in Hollow 
Circular Cylinders - II. Numerical Results," Journal of the Acoustical Society of America, 
vol. 31, pp. 573-578, 1959. 

7. R. R. Laverty, "Mechanics of Layered Cylindrical Elastic Waveguides," Ph.D. 
Dissertation, Colorado State University, 2001. 

8. R. D. Fay, "Waves in Liquid-Filled Cylinders," Journal of the Acoustical Society of 
America, vol. 24, pp. 459-462, 1952. 

9. M. S. Peloquin, "A Close-Form Dynamic Elasticity Solution to the Fluid/Structure 
Interaction Problem of a Two-Layer Infinite Viscoelastic Cylinder with Inner and Outer 
Fluid Loading Subject to Forced Harmonic Excitation," NUWC-NPT Technical Report 
11,067, Naval Underwater Systems Center Division, Newport, RI, 29 December 1995. 

10. H. Ding, W. Chen, and L. Zhang, Elasticity of Transversely Isotropic Materials, Springer, 
The Netherlands, 2006. 

11. A. J. Hull, "A Non-Conforming Approximate Solution to a Specially Orthotropic 
Axisymmetric Thin Shell Subjected to a Harmonic Boundary Condition," Journal of Sound 
and Vibration, vol. 177, no. 5, pp. 611-621, 1994. 

31 (32 blank) 



APPENDIX A 
COEFFICIENTS OF MATRICES AND VECTORS 

This appendix contains the coefficients of the matrices and vectors from the models 

developed in this report. 

The entries of the A matrix from equation (53) are 

al\ = (cl 1/1 + ikc\ 3#1 )J0 (/!«) + 

( 2 ^ cn-cu | -co Pi J0(yjd) 

v a Yi      h(YiO) 
h(Y\a) > (A-l) 

a\2 = (c\\Yl +ikcl3^)Y0(yia) + 
c12~cll +~

0)2Pi J0(//«) 

v a Yi      hiYi") 
Yx{yxa) , (A-2) 

ai3 = (cll/2 + ^l3^2)J0(y2a) + 
f 2 ^ c\2~c\\ +~°>  Pi JoO"/a) 

V a Yi     Ji(r/tf) 
h(Y2a) . (A-3) 

«14 =(cl 1/2 +ifc13^2 )Y0(r2«) + 

^ 2 ^ 

V « r/      Jl (/;«) 
Y,(y2a) , (A-4) 

a21 = c44{ik-yx^x)ix{yxa) , 

a22 = c44(ik-yx^x)Yx(yxa) , 

a2i = c44{ik-y242)ix{y2a) > 

(A-5) 

(A-6) 

(A-7) 

a24 = c44 (i* - y2%2 )Y, (y2a) (A-8) 



fl3i =(c\ir\+ikcu4l)30(/]b) + 
cn-cn    -co2p0^\yob) 

0), " Yo     Hy>(y0b) 
h(r\b), (A-9) 

«32 = (cuY\ +1^13^1 )Y0(ylb) + 
rcl2-cn   -co2

Po n$\rob)} 

b To     H\l)(y0b) 
Y,(n*) , (A-10) 

fl33 = (<W2 +'^i3^2)J0(/2^) + Ji(r2*)»       (A-ii) 

«34 = (q 1/2 + i*Cl 3^2 )Y0 {Ylb) + 
b Yo     n\l)(y0b) 

Yl(y2b) , (A-12) 

«4i =c44(^-nq)Ji(ri*)» 

a42 =c44(^-ri^l)Yl(n*) . 

a43 =C44(^-/2^2)Jl(/2*) » 

(A-13) 

(A-14) 

(A-15) 

and 

^44 =c44(i^-/2#2)Yl(/2*) • (A-16) 

The g vector from equation (53) is 

g = [Gj    G2    G3    GA]    . (A-17) 

The f vector from equation (53) is 
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f = [0   0   -Pe    Fe]
T . (A-18) 

The entries of the B matrix from equation (60) are 

2 

bu=-c»2ph+    * HEx (A-19) 
(\-urxvxr) 

bu=    {kh°"Er     , (A-20) 
a{\-urxoxr) 

ikho„Ex      ^ (A21) 

and 

12(1-^^)    a
2(\ -urxuxr)       Yi    hiTiO)       Y0    H\l)(y0a) 

The u vector from equation (60) is 

u = [W   U]T . (A-23) 

The p vector from equation (60) is 

P = to    -^]T- (A-24) 
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The entries of the C matrix from equation (65) are 

cll = -(A + 2{i)a2-Ak2 J0(aa) + 
2pa 

a 
-co2pj Jpfoa) 

Yi      h(Yia) 
lx{an) , (A-25) 

c12 (A + 2p)a2-Ak2 Y0(oa) + 
2/ua 

-a 
(      2 \ 

a> Pi hiYia) 

Yi      JiO'/a) 
Yx{aa) , (A-26) 

cl3=-2ifAfiJ0(fia) + 
2\pk 

\k 
a 

-co2Pj Ipi/jO) 

Yi      h(Yi°) 
hifia) , (A-27) 

cl4=-2iMk/3Y0(/h) + 
2\pk 

-iifc 
-G)2pi ipi/jO) 

Yi      JiO/«) 
Yi(/&), (A-28) 

C21 = -2\/Aa J\(aa) , 

C22 - -2\pka Yj (aa) 

(A-29) 

(A-30) 

c23=/;(A:2-y92)J1(A7), (A-31) 

c2A=n(k2-p2)Yx{fh) (A-32) 

c31 (/l + 2//)a2-^2 30(ab) + 
2fja 

+ a Q>2Po Ho W)^ 

r0    H|V0*) 
Jj(a6), (A-33) 

c32 = -(A + 2fii)a2 -AJc2 Y0(ab) + 
2pa 

+ a 
<o2Po HQ'W)^ 

r«    H|V06) 
Y,(o6) ,       (A-34) 
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c33=-2iMk/3J0(/1b) + 
2\fjk 

+ \k 
f-a>2

Po H•(r0b) 

To     ^\y0b) 
hifib). (A-35) 

C34=-2i//ty?Yo (/?/>) + 
2\/A 

+ \k 
co2p0 ^(rob)^ 

Y\ifi) (A-36) 

C4] --li/jka i\(ab) , 

c42 = -2i{ika Y] («Z>) , 

(A-37) 

(A-38) 

C43=M^2->92)J1(^), (A-39) 

and 

c44=/,(*2-/?2)Y1(/#>) (A-40) 

In equations (A-25) through (A-40), the constants are as follows: 

« = (*3-*2)1/2 '«0 
-11/2 

IQ 
(A-41) 

and 

2     ,2x1/2 P = (K-k") 
r    \ 

O) 

nl/2 

^cs; 
(A-42) 
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where 

cd = 
(i^i   ^1/2 

v      P     . 
(A-43) 

and 

(A-44) 

The relationship between the Lame constants and the material properties is 

X = - 
Ev 

(l + u)(l-2u) 
(A-45) 

and 

M = 2(1 + v) 
(A-46) 

In equations (A-45) and (A-46), Young's modulus and Poisson's ratio can be along any axis 

because the material is isotropic. 
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APPENDIX B 
MATLAB SUBROUTINE OF MODEL 

%--ElasticShellTF Elastic Shell Transfer Function 

-This program produces a model of the interior pressure 
in a fluid filled shell when it is loaded on the exterior 
by a normal and longitudinal force.  The shell has an 
outer fluid and is transversly isotropic.  The behavior of 
the shell is two-dimensional fully elastic.  Only the positve 
wavenumber points are calculated because the model is symmetric 
in wavenumber. 

Written by Andrew J. Hull on 11/26/08 

•6 

I 
I 
\ 
I 
4 
% 
% 
% 
% 
function [ PiDPo, PiDFo ] = ElasticShellTF 
(f req,kmax,numpts,a,b, r, Ex, Er,nuxr, ro, roi, ci, roo, co) 
"5 

% Output Variables 
% PiDPo = Interior Pressure (at r) Divided by Exterior Normal Pressure 
% PiDFo = Interior Pressure (at r) Divided by Exterior Longituidnal Force 
% 
% Input Variables 
% freq = Frequency (Hz) 
% kmax = Maximum wavenumber (rad/m) 
% numpts = Number of points in wavenumber 
% a = Inner shell radius (m) 
% b = Outer shell radius (m) 
% r = Hydrophone radius  (m) 
% Ex = Modulus in the axial direction (N/m*2) 
% Er = Modulus in the radial direction (N/mA2) 
% nuxr = Poisson's ratio of the matrix material 
% ro = Density of the shell (kg/m^3) 
% roi = Density of the inner fluid (kg/m*3) 
% ci = Wavespeed of the inner fluid (m/s) 
% roo = Density of the outer fluid (kg/m*3) 
% co = Wavespeed of the outer fluid (m/s) 

(dimensionless) 

%--Frequency in rad/s 
w = 2 * pi * freq; 
%--Build the wavenumber vector 
kvec = linspace ( eps, kmax, numpts ); 
%--kahigh is the wavenumber cutoff where the high wavenumber 
%   approximation is used in the analysis.  (This can be changed) 
kahigh = 5.0; 
%--Determine if the wavenumber vector has to be broken into low 
%   and high regions 
if ( a*kvec(end) > kahigh ) 

startindexhigh = min ( find ( a*kvec > kahigh ) ); 
klow  = kvec(1:1:startindexhigh-1); 
khigh = kvec(startindexhigh:1:end); 

else 
klow = kvec; 

end 

%--Transversely isotropic material constants from physical constants 
Gxr = Ex / ( 2 * ( 1 + nuxr ) ) ; 
nurx = nuxr * ( Er / Ex ); 
ell = Er * (l-nurx*nuxr)   / ( (1+nurx) * (l-nurx-2*nurx*nuxr) ); 
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cl2 = Er * nurx * (1+nuxr) / ( (1+nurx) * (l-nurx-2*nurx*nuxr) ); 
cl3 = Er * nuxr /             (l-nurx-2*nurx*nuxr); 
c33 = Er * nuxr * (1-nurx) / ( nurx    * (l-nurx-2*nurx*nuxr) ); 
c44 = Gxr; 

%--Low wavenumber region ka < kahigh 
b2 = cll*c44; 
bl = (cll*c33 - cl3A2 - 2*cl3*c44)*klow.A2 - (c44+cll)*ro*wA2; 
bO = roA2*w"4 - ro*w"2*(c33+c44)*klow.*2 + c33*c44*klow.A4; 
gammal = sqrt (  ( -bl + sqrt ( bl.A2 - 4*b0*b2 ) ) / ( 2 * b2 )  ); 
gamma2 = sqrt (  ( -bl - sqrt ( bl.A2 - 4*b0*b2 ) ) / ( 2 * b2 )  ); 
zetal = ( ro*wA2 - cll*gammal.A2 - c44*klow.A2 ) ./ ( i*klow.*gammal*( cl3 + 
c44 ) ) ; 
zeta2 = ( ro*wA2 - cll*gamma2.A2 - c44*klow.A2 ) ./ ( i*klow.*gamma2*( cl3 + 
C44 ) ) ; 

%--Inner fluid load 
gammai = sqrt ( (w/ci)A2 - klow.A2 ); 
gammai = gammai + ( gammai == 0 )*eps; 
fluidiload = ( (-wA2*roi) ./ gammai ) 
besselj(1,gammai*a) ); 

( besselj(0,gammai*a) ./ 

%--Srr(a) = inner fluid load; 
Amatll = ( ell * gammai + i * klow * cl3 .* zetal ) 
+ ... 

(  ( cl2 - ell ) * ( 1 / a )  +  fluidiload 
besselj(l,gammal*a); 
Amatl2 = ( ell * gammai + i * klow * cl3 .* zetal ) 
+ ... 

(  ( cl2 - ell ) * ( 1 / a )  +  fluidiload 
bessely(1,gammal*a); 
Amatl3 = ( ell * gamma2 + i * klow * cl3 .* zeta2 ) 
+ ... 

(  ( cl2 - ell ) * ( 1 / a )  +  fluidiload 
besselj(l,gamma2*a); 
Amatl4 = ( ell * gamma2 + i * klow * cl3 .* zeta2 ) 
+ ... 

(  ( cl2 - ell ) * ( 1 / a )  +  fluidiload 
bessely(l,gamma2*a); 
o 
o 

%--Srz(a) = 0; 
Amat21 = c44 * ( i * klow - gammai .* zetal ) .* besse 
Amat22 = c44 * ( i * klow - gammai .* zetal ) .* besse 
Amat23 = c44 * ( i * klow - gamma2 .* zeta2 ) .* besse 
Amat24 = c44 * ( i * klow - gamma2 .* zeta2 ) .* besse 

* besselj(0,gammal*a) 

* 

* bessely(0,gammal*a) 

* 

* besselj(0,gamma2*a) 

* 

* bessely(0,gamma2*a) 

Lj(1,gammal*a) 
Ly(l,gammal*a) 
Lj (1,gamma2*a) 
Ly(l,gamma2*a) 

%--Outer fluid load 
gammao = sqrt ( (w/co)*2 - klow.A2 ); 
gammao = gammao + ( gammao == 0 )*eps; 
fluidoload = ( (-wA2*roo) ./ gammao ) .* ( besselh(0,1,gammao*b) ./ 
besselh(1,1,gammao*b) ); 

%--Srr(b) = outer fluid load 
Amat31 = ( ell * gammai + i * klow * cl3 .* zetal ) 
+ ... 

(  ( cl2 - ell ) * ( 1 / b )  -  fluidoload 
besselj(l,gammal*b); 
Amat32 = ( ell * gammai + i * klow * cl3 .* zetal ) 
+ ... 

(  ( cl2 - ell ) * ( 1 / b )  -  fluidoload 
bessely(l,gammal*b); 
Amat33 = ( ell * gamma2 + i * klow * cl3 .* zeta2 ) 
+ ... 

* besselj(0,gammal*b) 

* bessely(0,gammal*b) 

* besselj(0,gamma2*b) 
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(  ( cl2 - ell ) * ( 1 / b )  -  fluidoload  ) 
besselj(l,gamma2*b); 
Amat34 = ( ell * gamma2 + i * klow * cl3 .* zeta2 ) 

(  ( cl2 - ell ) * ( 1 / b 
bessely(l,gamma2*b); 

fluidoload 

bessely(0,gamma2*b) 

%- -srz 
Amat41 
Amat42 
Amat4 3 
Amat4 4 

c44 * ( i * klow - gammal .* zetal ) .* besselj(1,gammal*b) 
c44 * ( i * klow - gammal .* zetal ) .* bessely(1,gammal*b) 
c44 * ( i * klow - gamma2 .* zeta2 ) .* besselj(1,gamma2*b) 
c44 * ( i * klow - gamma2 .* zeta2 ) .* bessely(1,gamma2*b) 

%--Determinant 
DetA = Amatll. 

-Amatll. 
Amatll. 
-Amat21. 
Amat21. 
-Amat21. 
Amat31. 
-Amat31. 
Amat31. 
-Amat41. 
Amat41. 
-Amat41. 

% 
%--Protect aga 
DetA = DetA + 

of Amat 
*Amat22. 
*Amat32. 
*Amat42. 
*Amatl2. 
*Amat32. 
*Amat42. 
*Amatl2. 
*Amat22. 
*Amat42. 
*Amatl2. 
*Amat22. 
*Amat32. 

inst a z 
( DetA = 

*Amat33. 
*Amat23. 
*Amat23. 
•Amat33. 
*Amatl3. 
*Amatl3. 
*Amat23. 
*Amatl3. 
*Amatl3. 
*Amat23, 
*Amatl3. 
•Amat13, 

*Amat44 
*Amat44 
*Amat34 
*Amat4 4 
*Amat44 
*Amat34 
*Amat44 
*Amat44 
*Amat24 
*Amat34 
*Amat34 
•Amat24 

- Amat11. 
+ Amatll. 
- Amatll. 
+ Amat21. 
- Amat21. 
+ Amat21. 
- Amat31. 
+ Amat31. 
- Amat31, 
+ Amat41, 
- Amat41. 
+ Amat41, 

*Amat22 , 
*Amat32. 
*Amat42. 
*Amatl2. 
*Amat32, 
*Amat42, 
*Amatl2, 
*Amat22. 
*Amat42 , 
*Amatl2 
*Amat22 
*Amat32 

*Amat34. 
*Amat24 . 
*Amat24 . 
*Amat34 . 
*Amat14. 
*Amat14. 
*Amat24. 
*Amatl4, 
*Amat14. 
*Amat24. 
*Amatl4. 
*Amat14. 

*Amat4 3 
*Amat4 3 
*Amat3 3 
*Amat4 3 
*Amat43 
*Amat33 
*Amat43 
*Amat4 3 
*Amat23 
*Amat33 
•Amat33 
*Amat23; 

ero divide 
= 0 )*eps; 

%--Inverse terms of A (Not all terms are needed) 
invA13 = (  Amatl2.*Amat2 3.*Amat44 - Amatl2.*Amat24.*Amat4 3 + ... 

-Amat22.*Amatl3.*Amat44 + Amat22.*Amatl4.*Amat43 + ... 
Amat42.*Amatl3.*Amat24 - Amat42.*Amatl4.*Amat23  ) ./ DetA; 

invA14 = ( -Amat12.*Amat23.*Amat34 + Amatl2.*Amat24.*Amat33 + ... 
Amat22.*Amatl3.*Amat34 - Amat22.*Amatl4.*Amat33 + ... 
-Amat32.*Amatl3.*Amat24 + Amat32.*Amatl4.*Amat23  ) ./ DetA; 

invA2 3 ( -Amat23.*Amat44.*Amatll + Amat24.*Amat43.*Amat11 + ... 
-Amat41.*Amatl3.*Amat24 + Amat41.*Amatl4.*Amat23 + ... 
Amat21.*Amatl3.*Amat44 - Amat21.*Amatl4.*Amat43  ) ./ DetA; 

invA24 = (  Amat23.*Amat34.*Amat11 - Amat24.*Amat33.*Amat11 + ... 
Amat31.*Amat13.*Amat24 - Amat31.*Amatl4.*Amat23 + ... 
-Amat21.*Amatl3.*Amat34 + Amat21.*Amatl4.*Amat33  ) ./ DetA; 

% 
invA3 3 (  Amat22.*Amat44.*Amat11 - Amat24.*Amat42.*Amat11 + 

Amat41.*Amatl2.*Amat24 - Amat41.*Amatl4.*Amat22 + 
-Amat21.*Amatl2.*Amat44 + Amat21.*Amatl4.*Amat42  ) ,/ DetA; 

invA34 = ( -Amat22.*Amat34.*Amat11 + Amat24.*Amat32.*Amat11 + 
-Amat31.*Amatl2.*Amat24 + Amat31.*Amatl4.*Amat22 + 
Amat21.*Amatl2.*Amat34 - Amat21.*Amatl4.*Amat32  ) ./ DetA; 

invA4 3 = 

% 
invA4 4 

( -Amat22.*Amat43.*Amat11 + Amat23.*Amat42.*Amat11 + ... 
-Amat41.*Amatl2.*Amat23 + Amat41.*Amatl3.*Amat22 + ... 
Amat21.*Amatl2.*Amat43 - Amat21.*Amatl3.*Amat42  ) ./ DetA; 

(  Amat22.*Amat33.*Amat11 
Amat31.*Amatl2.*Amat23 

Amat23.*Amat32.*Amat11 + 
Amat31.*Amatl3.*Amat22 + 
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-Amat21.*Amatl2.*Amat33 + Amat21.*Amatl3.*Anat32  ) ./ DetA; 
D 

%--Shell displacement radial direction at a due to external radial pressure 
ShellDispRadDPo = -invA13.*besselj(1,gammal*a) - invA33.*besselj(l,gamma2*a) + 

-invA23.*bessely(l,gammal*a) - invA43.*bessely(l,gamma2*a); 

%--Interior fluid pressure at r due to external radial pressure 
PiDPo = ( (-w*2*roi) ./ gammai ) .* ShellDispRadDPo .* ( besselj(0,gammai*r) 
./ besselj(l,gammai*a) ); 
o, 

%--Shell displacement radial direction at a due to external longituidnal force 
ShellDispRadDFo = invA14.*besselj(1,gammal*a) + invA34.*besselj(l,gamma2*a) + 

invA24.*bessely(l,gammal*a) + invA44.*bessely(1,gamma2*a); 
% 
%--Interior fluid pressure at r due to external longitudinal force 
PiDFo = ( (-w*2*roi) ./ gammai ) .* ShellDispRadDFo .* ( besselj(0,gammai*r) 
./ besselj(1,gammai*a) ); 
% 
%  
%--High wavenumber region ka >= kahigh 
if ( exist('khigh') == 1 ) 

Azero = PiDPo(end) * (klow(end))*4; 
Bzero = PiDFo(end) * (klow(end))A4; 

o, 
"<•< 

PiDPohigh = Azero ./ ( khigh.A4 ); 
PiDFohigh = Bzero ./ ( khigh.*4 ); 

PiDPo( max(size(klow)+1) : max(size(kvec)) ) = PiDPohigh; 
PiDFo( max(size(klow)+1) : max(size(kvec)) ) = PiDFohigh; 

% 
end 

%--Populate the output vectors with the negative wavenumber response 
PiDPo = [ fliplr(PiDPo(2:end)) PiDPo ]; 
PiDFo = [ fliplr(PiDFo(2 rend)) PiDFo ]; 
6 

end 
%  
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